
CS3211: Parallel Raytracer
Due on April 18, 2016

Chen Jingwen A0111764L

1



Chen Jingwen A0111764L Problem 1

Introduction

In this paper, we provide an implementation of an animated and parallel 3D raytracer built with GPU.js,

along with evaluation of the performance, rendering results of visuals, data analysis of speedup and accuracy,

and summary.

GPU.js is a JavaScript library that provides an API and a compiler into GLSL, the language specification

for WebGL. This provides web developers a way to access GPU resources and parallelize computations (e.g.

matrix multiplication).

The working demonstration is available online at http://raytracer.crypt.sg, which has been tested on the

latest versions of Google Chrome and Safari on OSX. The source code repository is available at

http://github.com/jin/raytracer.

Figure 1: Screenshot of the raytracer

Initial survey and thoughts

Having no prior knowledge of raytracer implementations, we looked into the Literate Raytracer guide

(MacWright, 2013) that was linked within the assignment document. It’s based on the popular backward

tracing algorithm, which traces the path of light rays from the camera to entities in the scene. It’s also more

efficient than the forward tracing algorithm where even though it mirrors how photons work in nature, the

majority of rays emitted from entities do not reach the camera and are wasted.

MacWright’s algorithm is also sequential. It does a nested for loop to iterate through all pixels, resulting

in a O(n2) time complexity. Here, we aim to parallelize computation as much as possible with the use of

GPU.js.

2



Chen Jingwen A0111764L Problem 1

Hardware

Development, testing and benchmarking are conducted on a Early 2015 Macbook Pro 13”, with the following

hardware specifications:

1. Intel Core i5 clocked at 2.9Ghz, 2 cores

2. Intel Iris Graphics 6100 with 1536MB of VRAM

Being an onboard processor, the Intel Iris Graphics 6100 does not that the hardware capabilities that a

dedicated GPU will have. It has 48 execution units as compared to the hundreds of a dedicated GPU, but

it is still magnitudes higher than the 2-core Intel core i5. We will see the performance speedup in a later

section.

Implementation

We chose to implement the raytracer using TypeScript, a superset language of JavaScript that provides

several enhancements to the language and compiles down to standard JavaScript. The most notable en-

hancement is static typing – this provides compile time type safety for portions of the code where the type

has been explicitly annotated. This has proved to be immensely useful during development, when several

classes of bugs were caught by the compiler as complexity grew. TypeScript also provides APIs for classes

and enums, both of which are features in ES6 but not ES5.

Unit tests were also written for the Vector operation functions to ascertain confidence in the actual raytracing

algorithm.

On top of the regular initial raytracing to detect and infer the pixel colour from the closest entity intersecting

with the camera ray, we also implemented the additional following features:

1. Lambertian shading

This provides a lighting effect using light rays shone onto entities, from light points placed in the

scene. A corollary effect from this is having entities being able to cast shadows on each other.

2. Specular reflection

This makes the surface of entities reflective, hence mirroring the shapes and colors of other objects on

an entity’s surface if the ray intersects. This is implemented with a depth of three bounces.

3. Ambient coloring

Ambient coloring adds the ability to color shadows, so entities do not look completely black when

parts of it receive no light rays.

4. Camera movement

The keys W, A, S and D have been programmed to move the camera forward, backwards, leftwards

and rightwards respectively.

5. Animated spheres

For visual enhancements, each scene has randomly generated spheres with different sizes and colors.

These spheres are animated to bounce within an imaginary cuboid boundary.

3



Chen Jingwen A0111764L Problem 1

Figure 2: Raytracer scene

6. Collision detection and basic 3D physics

There is also basic collision detection between two spheres, as well as a function to reflect two spheres

after they have collided with each other.

7. Additional LightSphere type as a physical scene entity for lights.

There was a small visual annoyance as to how the light source was invisible to the user, so we added a

LightSphere type that acts as a white light and does not interfere physically with any other entity in

the scene.

8. Plane intersection

Ray-Plane intersection functions were also implemented, but we were unable to make planes aes-

thetically pleasing enough to include in any demonstration scenes.

9. Slider inputs to tune scene entity count and rendering methods on the fly.

4



Chen Jingwen A0111764L Problem 1

Benchmarking method

Before we can implement optimizations to the raytracer, it is crucial to quantify the performance of it. There

are a few features that we can use to determine the speedup obtained with parallelization.

1. Frames rendered per second

2. Minimum, average or median time taken to render a frame

3. Time taken to render N frames

Here, we compare the advantages and disadvantages of each feature.

1. Frames per second: This is dependent directly on the time it takes to render a single frame, along

with any overhead of the browser and hardware’s capability to draw the image on the screen. It can

be also seen as the tick rate, which is a good measure for speedup.

2. Average frame render time: Fluctuates far too much due to the susceptibility to outliers. If a

single frame takes an abnormally long time to render, the average becomes an inaccurate metric.

3. Minimum frame render time: Theoretical fastest time it takes to render a frame, good metric to

analyse.

4. Median frame render time: Not affected by outliers, especially abnormally slow render times.

Representative of data.

5. Time taken to render N frames: This is just a summation of the total time taken for each frame

and may contain outliers. Not as representative as the median.

With these in mind, we have decided to go with average FPS, Minimum and Median frame render

times as benchmark features.

Each benchmarking run will be based on the following steps:

1. Benchmark CPU

2. Benchmark GPU with the same scene

3. Compare speedups on the various selected features.

An important thing to note is that calls to the GPU kernel are asynchronous, unlike the blocking calls to

the CPU kernel. Therefore, the speedups measured are perceived by the user and not the true speedup.

Unfortunately, due to the implementation of GPU.js, this is the closest we can get to the metal without

writing GLSL directly. A feature improvement for GPU.js will be providing a callback method in the kernel

to correctly time the execution time.

Accuracy

In both JavaScript and the compiled GLSL code, all number data types are floats. There are no integers at

all, which makes calculation results at several corners in the raytracer less accurate than they should be.

Examples where this inaccuracy led some unexpected behaviour is when indexes are computed and used be-

fore they are floored (e.g. array[10 / 3]), and during ray intersection detection where the minimum distance

5



Chen Jingwen A0111764L Problem 1

limit couldn’t be exactly zero (but it should be theoretically) due to the floating-point vector operations, so

we had to modify it to become a very small negative number (e.g -0.005).

Another example is that a particular speedup benchmark was computed to be 24.797081926775217, but cases

like these do not usually require exact accuracy and can be rounded up or down.

GLSL’s Float32-only computations also hasn’t presented any serious issues to the raytracer functionalities.

Parallelization and optimization techniques

Motivation

A huge advantage GPU.js has that many WebGL wrappers lack is the ability to fall back to use the CPU

for the kernel if WebGL is not available. The user also has the ability to create the kernel to use the CPU

mode explicitly.

However, the biggest disadvantage of the CPU kernel is that all parallel code are ran sequentially, which

slows the algorithm execution down significantly. A speedup comparison plot of the demo raytracer scene

with an increasing number of spheres is shown in Figure 3.

Figure 3: Speedup with an increasing number of spheres in scene

From Figure 3, we can see that with more entities in the scene, the larger the speedup will be. It is

therefore crucial to implement parallelization techniques to take advantage of the modern multi-core and

multi-processor systems.

6



Chen Jingwen A0111764L Problem 1

Pixel by pixel parallelization

Raytracing has been described as embarassingly parallel, where the main task can be broken down into par-

allelizable and independent subtasks easily. In raytracing, each pixel’s computed color is independent from

every other pixel’s, and thus we can distribute each pixel, or sets of pixel, among processing units. This is

also known as parallel rendering, which happens to be the only parallelization implementation for coloring

a canvas with GPU.js.

For benchmarking purposes, we fix the canvas size to be 640 pixels wide by 640 pixels high, and raytrace a

light source and a few spheres bouncing about in a cuboid boundary. The GPU kernel will create one thread

per pixel, so the upper bound on speedup is equal to the number of pixels on the screen.

A downside to this method is that the overhead of managing so many threads and may cause a bottleneck

or resource starvation in the GPU. This might be counterproductive to the speedup advantages that it’s

expected to bring, which is why it has inspired us to attempt an optimization technique: tiling.

Tiling of canvas into smaller chunks

Figure 4: 3 by 3 tiling grid

Instead of assigning the entire canvas to a single kernel and creating N2 threads, we can reduce the number

of threads created at any point in time by slicing the canvas up into small tiles, and then assigning each

tile to a GPU.js kernel. The idea here is to have each kernel exploit spatial locality, and the reduction in

7



Chen Jingwen A0111764L Problem 1

overhead caused by the enormous number of threads.

In the current implementation, the canvas can be equally divided into 2x2, 3x3 and 4x4 tiles, which repre-

sents 4, 8 and 16 kernels created respectively. Each kernel is executed sequentially, so the number of threads

created at each point in time is reduced quadratically as the grid dimension of sub-canvases increases.

4x4 tiles is the limit as the browser will show a warning for too many WebGL contexts created with a 5x5 grid.

Next, we benchmark the GPU vs CPU speedups for each tile division setting.

8



Chen Jingwen A0111764L Problem 1

Figure 5: Median frame render time speedup

Figure 6: Minimum frame render time speedup

9



Chen Jingwen A0111764L Problem 1

Figure 7: Frames per second improvement

Here, we observe that speedups were observed across all grid settings. We also observe that the speedups

obtained with 2x2 grid and above are much lower than the 1x1 setting, and this is likely due to the sequential

execution aspect of multiple kernels, which brings the GPU execution model closer to the CPU counterpart.

10



Chen Jingwen A0111764L Problem 1

Figure 8: Frames per second benchmark

We observe that at a lower entity count, a 1x1 grid has a better performance, but as the entity count in-

creases, larger grids with more subdivisions had a better performance. This shows that the more complex a

scene is, the more performance gain one will get by subdividing the canvas into subcanvases.

However, the 4x4 grid performance stuttered – this is likely to due to massive overhead that comes with

having 16 WebGL subcanvases on a browser screen.

11



Chen Jingwen A0111764L Problem 1

Challenges

Parallelization library in alpha stage

Having to work with a library that’s still in its alpha stage was incredibly challenging, especially due to the

lack of data types like vectors, the lack of debugging methods and different ways to set the default parallel

task distribution instead of the default 1-thread-per-pixel option.

The JavaScript subset language that we were able to use in the kernel code was also very limited, leading to

very complex and non-DRY (Don’t Repeat Yourself) code.

However, this forces us to really understand the inner working of the arithmetics that goes on behind building

a raytracer, which we thought was a really good opportunity to learn more about computer graphics.

Future work

Sparse voxel octree and 3D-DDA

We aim to further implement more optimizations and benchmarks on this raytracer, and the next step is to

implement a data structure that we came across during literature survey: sparse voxel octree.

A sparse voxel octree (Sung, 1991) is a tree data structure for 3D spaces, where each node has exactly 8 child

nodes. The 3D space can be recursively divided into 8 smaller volumes called voxels (Volumetric Pixel). The

recursion depth is not bounded, but the base case is usually met when a voxel has at most N entities that

intersects it. The raytracer then traverse through this data structure using an algorithm like 3D-DDA (3D

Digital Differential Analyzer), and only raytrace voxels that has known entities from the pre-computation.

A sparse scene will result in larger, empty voxels, which can be skipped by the ray instantly. This prevents

wasteful computation while still allowing as much detail as possible, due to the recursive nature of voxelisa-

tion.

Another advantage of this data structure is that it does not need to be completely loaded into memory –

it can be streamed as needed to the raytracer for voxels that it intersects. This greatly lessens the memory

pressure for scenes with larger resolutions.

Conclusion

In this paper, we presented an implementation of a parallel raytracer, additional features, and a couple of

parallelization methods to divide the raytracer tasks up and distributed to multiple processing units.

We have observed that with a lower entity count in the screen, a single canvas with one thread per pixel

works better, but as the entity count increases, subdividing the canvas into subcanvases and executing each

subcanvas with a kernel sequentially will actually have a higher frames per second rate. This concludes that

subdivision and tiling of the canvas is a viable parallelization optimization of a parallel raytracer.

12



Chen Jingwen A0111764L Problem 1

References

MacWright, T. (2013, November 2). Literate Raytracing. Retrieved April 7, 2016,

from http://www.macwright.org/literate-raytracer/

An Overview of the Ray-Tracing Rendering Technique. (n.d.). Retrieved April 13, 2016,

from http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview

Boulos, S. (n.d.). Retreived April 5, 2016

from https://graphics.stanford.edu/ boulos/papers/efficient notes.pdf

Sung, K. (1991). A DDA octree traversal algorithm for ray tracing. In F. H. P. and W. Barth (Ed.),

Eurographics91. Proceedings of the European Computer Graphics Conference and Exhibition (pp. 73-85).

Retrieved April 8, 2016 from http://faculty.washington.edu/ksung/pub/1991.EG91Paper.pdf

13


