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1 ABSTRACT

Type systems has been a topic of heavy research in programming
language theory for decades, with implementations in different lan-
guages across paradigms. In object oriented languages, class based
type systems describe a hierarchy between objects using a concept
known as subtyping. Subtyping describes relations between types,
allowing terms of a type to be used safely in places where terms
of another type is expected. This increases the flexibility of exist-
ing type systems by increasing expressiveness while maintaining
well-typedness. In this technical report, we will give an overview
of the motivation and formalism of subtyping systems. We will
also provide a Haskell implementation of record datatype subtyp-
ing in a functional toy language to demonstrate a typechecking
algorithm. Lastly, we will explore related work in the field in the
decades following its conception.

2 INTRODUCTION

Type systems are a central feature of programming languages and
they come in different manifestations, stemming from decades of
research in programming language theory. Despite implementation
differences, the one thing in common is to prevent entire classes of
erroneous program behaviours from happening.

Cardelli’s 1996 paper, Type Systems [8], provides a high level
overview on the subject, ranging from first order type systems (a
la Simply Typed Lambda Calculus) to System F<:. A collection of
type system flavours is summarised in the following list:

(1) First order (System F;): Pascal, Algol68

(2) Second order (System Fz): ML, Haskell, Modula-3
(3) Object-oriented (OO), class-based: Java, C++

(4) Dependent types: Idris, Agda

(5) Dynamic: Smalltalk, Ruby

Zooming in on typed object-oriented systems, the dominating
feature is the type hierarchy via subclasses, which describes a rela-
tion of attribute and behaviour inheritance between objects. How-
ever, the variety of implementations and optimizations of subclass-
ing systems makes understanding and formalising this relation a
difficult endeavour. Subtyping is a popular approach to formalise
such relations, and it was a concept introduced by Cardelli with his
seminal paper “A Semantics of Multiple Inheritance” [5].

The purpose of this report is to present a notion of typing and
subtyping, an exploration on the evolution of research around
subtyping in the past decades, and an implementation of a static
typechecker for a language with a subtyping system. In the next
section, we will describe what subtyping is and the benefits that it
brings to a type system. Next, we will formalize the inference rules
for a language with subtyping, alongside a concrete implementation

of a typechecker in a toy programming language with subtyping.
Finally, we will explore the related work in the field of subtyping.

3 SUBTYPING

3.1 Overview

Traditionally, type systems rigidly restrict the usage of typed terms
in locations based on the idea of type equality. This results in
programs where it is not obvious why typechecking fails, even
though it seems natural in both syntax and semantics. For example,
the function application

(fn (x: float) => x + 2) (2 :: int)

seems that it should be well-typed as the + operation permits addi-
tions with operands of both int and float types, but since they are
not equal under classical type systems, the expression is ill-typed.

Subtyping is the formalisation of relations between types with
the goal of allowing terms of a type to be used in locations where
terms of other types are expected. For example, we want to allow
operations that are defined on reals, R, to work with integers, Z,
by forming a subtype relation between Z and R. Pierce described
this to be the principle of safe substitution in his book, Types and
Programming Languages [26], where terms of one type can be safely
substituted in place of a term of another type without incurring
runtime type errors. This is also known as Liskov’s substitution
principle, where safety is asserted on behavioural properties in
subtype relations [20].

As a core concept utilised in object-oriented (OO) languages
for the hierarchical organization of objects, subtyping is often im-
plemented in the form of subclassing. Classes, the templates that
objects are instantiated from, are ordered hierarchically in the form
of superclasses and subclasses.

In “A Semantics of Multiple Inheritance”, Cardelli analysed pop-
ular OO languages (Simula, Lisp & Smalltalk) in their representa-
tions of objects [5], and decided to focus on representing objects
as records, which is essentially the Cartesian product type with la-
bels. The main advantage of using the concept of records (with
functional components) was for simplicity, because it is possible to
statically determine the fields of a record at compile-time, hence
removing any need for dynamical analysis at runtime for invalid
field accesses. He then presented the grammar and semantics of a
static, strongly typed functional language with multiple inheritance,
and record and variant subtyping. He also provided sound type
inference and type checking algorithms on the semantics.

In a later paper, Type Systems [8], he described subtyping as a
form of set inclusion, where terms of a type can be understood as el-
ements belonging to a set, and the subtyping relation is understood
as the subset relation between these sets of elements.



3.2 Implementation of FunSub

Before diving into an overview of the fundamental subtyping con-
cepts, we will first describe a Haskell implementation of a toy lan-
guage, FunSub, and a static typechecker for checking well-typedness
in the presence of subtypes.

The purpose of this toy language is to provide a concrete real-
isation of the formal definitions that we will explore in the later
sections. We will attach snippets of implementations alongside the
definitions where applicable.

FunSub is a superset of Fun [10], which is in turn an implementa-
tion of Church’s Simply Typed Lambda Calculus [13] that includes
the record datatype and a modified style of explicit typing (also
known as ascriptions).

The source code for FunSub is available online [12].

3.2.1 Usage. Assuming Haskell is installed and the user is in
the project directory, running the following command will invoke
the typechecker:

runhaskell Main.hs examples/typed_expressions.fun

This produces an output similar to the following:

[Expression]: (fn x :: (Int -> Int) => 2)
[Typecheck][0K]: (Int -> Int)

[Expression]: (fn x :: (Int -> Int) => true)
[Typecheck][FAIL]: Type mismatch: expected Int, got Bool

3.2.2  Architecture. The components of the language comprises
of a REPL/reader, lexer, parser and typechecker. Some examples of
FunSub expressions are stored in the examples/ folder.

Main.hs is the entry point that takes in the filename for a file
containing FunSub expressions. The lexer (Lexer.hs) defines re-
served tokens and lexemes, and the parser (Parser . hs) uses Parsec
on the tokens to generate an abstract syntax tree (AST) defined
in Syntax.hs. Lastly, the AST is checked for well-typedness with
rules defined in the typechecker (Typecheck.hs).

3.2.3 Syntax.
c € Const constants
a,x € Ident alphanumeric identifiers
tu=1Int integers
| Bool booleans
| t1 >ty arrows
[{a1 : t1, ..., an : ty} records
eun=c constant
| x variable
[ (fnx :: () =>e) function abstraction
| e ez function application
[{a1=e1, ..., an=¢€n} :: t record

| e.a record projection

3.24 Records. Records are data structures in the form of finite
and unordered associations from labels to values, with each pair
described as a field. To extract a value from a field, we use the
projection notation e.a where a is the label of a field in the record
e.

The purpose of having records in our toy language is for demon-
strating subtyping relations on a composite data structure, unlike
Int and Bool.

3.2.5  Explicit types. To simplify implementation, we chose to
use an explicit typing notation (expr :: type) to assert the types
for functions and records, in place of a type inference algorithm.

3.2.6 Example. The following is a valid expression in the FunSub
syntax:

(fn x :: ({ a: Int, b: Int } -> { a: Int }) => x)
{a=2,b=2,c=true} :: {a: Int, b: Int, c: Bool }
In type systems without subtyping, this function application will

not typecheck because the record argument type does not match
the parameter type, and the parameter type does not match the
function body type even though it is an identity function. However
in our subtyping implementation, we are able to use concepts such
as variance (§3.5), width and depth record subtyping (§3.4) to make
this expression well-typed.

3.2.7 Implementation: AST. The AST is a direct translation of
the syntax defined in §3.2.3.

-- Syntax.hs
data Ty = IntTy
BoolTy

ArrowTy Ty Ty
RcdTy [(String, Ty)]
deriving (Show, Eq)

data Expr = I Int Ty

| B Bool Ty

| var String

| Fn String Expr Ty

| FApp Expr Expr

| Red [(String, Expr)] Ty
| RcdProj Expr Expr
deriving (Show, Eq)

3.2.8 Implementation: Typechecker. The two main functions of
the typechecker are typecheck and isSubtype. Their type signa-
tures are defined as follows:

-- Typecheck.hs
newtype TypeEnv = TypeEnv (Map String Ty)

isSubtype ::
typecheck ::

Ty -> Ty -> Bool
TypeEnv -> Expr -> Either String Ty
isSubtype takes in two types and recursively determines if the
first type is a subtype of the second, using the inference rules
defined in §3.3.
typecheck takes in a type environment (a mapping of variables
to types) and an AST, and recursively determines if the expression
is well-typed. If it is ill-typed, an error message describing the issue



is bubbled up and handled in Main.hs. If it is well-typed, the exact
type is returned to the caller.

The exact implementation of these functions will be in the fol-
lowing section.

3.3 Rules

We will now introduce the formal rules of subtyping, as detailed by
Cardelli and subsequently summarised by Pierce [5, 6, 8, 26].

3.3.1 Subsumption.

TF'tt:a a<:rt

T ir Subsumption

The subsumption rule formally introduces subtyping into a type
system. It states that if there exists some term ¢ of type «, and that
a is a subtype of another type 7, then ¢ is also of type 7. For the rest
of the paper, we will use the symbol <: to mean “is a subtype of”.

We can view this rule from another perspective by loosely equat-
ing a type as a set of elements, and subtypes as some well-defined
subsets, and translating the subtype relation <: to the subset rela-
tion C. The subsets are well-defined because there are certain rules
on how they are defined. Using this perspective, it is clear that any
element belonging to a set is also an element in its superset(s).

This rule permits a term to have at least two types: its own type,
and supertype(s) of its own type. Cardelli describes this idea as
multiple inheritance, where objects are no longer bound to having
only one superclass [5].

This is a stark difference from classical type systems where every
term has only one unique type. The reduction in rigidity has obvious
benefits; terms of a type 7 can now be used in locations where terms
of the supertype(s) of 7 are expected.

3.3.2  Reflexivity. The reflexive property follows naturally from
type subsumption; every type can be used in locations where it is
expected. Hence, for any type 1, the type is a subtype of itself.

1< Refl

The implementation is trivial, and is the catchall match clause
for the isSubtype function:

isSubtype tyl ty2 = tyl == ty2

3.3.3 Transitivity. If type 7, is a subtype of 73, and 7}, is a sub-
type of 7, then 7, is a subtype of 7.
Tqa<:Tp Tp<:Tc
L <n Trans
There is no corresponding implementation for this as it is not
syntax-directed: the consequent of the rule is too general; it can
be applied everywhere with an unbounded number of choices for
7p [26]. It is also proven that subtyping algorithm is sufficiently
decidable with the syntax-directed rules for individual types and
without the need for Trans (and Ref1l) [26].

3.4 Records

The introduction of subtyping requires all new type definitions to
have well-defined subtyping behaviour to maintain consistency
with the subsumption rule. Hence, by introducing the record data
type, we need to define exactly how records are ordered in the

relation. To determine whether a record is a subtype of another,
there are two approaches to determine this structurally: width-wise
and depth-wise.

3.4.1 Width subtyping. As defined by Subsumption, we want
to be able to promote a record to its supertype without losing any
information. Hence, the subtype should contain at least the same
(common fields with identical types), if not more, information with
its supertype.

T ,_Tiiei,.nJrk
{ai :TiiEi"”*k} < {ai :Tiiei"”}

RecordWidthSub

For example, a record of type { a: Int, b: Bool 3} can be
substituted in places where { a: Int }isexpected (e.g. projection
of record. a), simply by ignoring the b: Bool field.

3.4.2 Depth subtyping. In cases where the labels of the record
fields are identical, we compare the types of the corresponding
fields and ensure that they conform to the subtype relation:

5i<:Tii€i“n
{ai :Siiei""} <: {ai :TiiEi"n}

RecordDepthSub

3.4.3 Permutation independence. Since records are unordered,
the subtype relation of the two records should be independent on
how the fields are ordered, as long as common fields conform to
the relations.

{ai : SiiEi"”} is a permutation of{bi : Ti€En

{ai :Siiei,.n} < {bi :Tiiei..n}

RecordPermSub

3.4.4 Syntax-directed rule. Like Trans, it is not clear which of
the three rules above should be used as the syntactical structure
is the same in every consequent. Hence, there is a syntax-directed
rule in which all three rules, RecordWidthSub, RecordDepthSub
and RecordPermSub, are combined. This leaves no ambiguity on
rule selection:

{ai L gietnt ¢ {bj : TJJEL""} ai =bj > Tj <: S

{bj . TjjeL.m} < {ai :Siiei..n}

RecordSub

The implementation can be derived from RecordSub by perform-
ing a predicate check where the first record type has all of the fields
in the second record type, and then recursively typechecking the
common fields such that the field type in the first record is a subtype
of the corresponding field in the second record:

isSubtype (RcdTy xs) (RcdTy ys) = all sub ys
where sub (lbl, ty) = case lookup lbl xs of
Just ty2 -> isSubtype ty2 ty
Nothing -> False

3.5 Functions

Like the record type constructor, we need to define how functions
relate to each other in the subtype relation, as our toy language
allows functions to be used as arguments.

3.5.1 Function abstraction subtyping. This states that a function
of type & — 7 is a subtype of a function of type &’ — 7’ if &’ <: «
and 7 <: 7’.



’ ’
a<ita 1v<:T .
—————— FunctionSub
a—->Tt<:a >7T

To aid with the understanding of this relation, we need to intro-
duce the notion of variance.

The function type constructor, —, has the types flipped on the
left, but not on the right. A way to look at this is by understanding
the circumstances under which the functions are called: when call-
ing the function of type & — 7, it should accept only arguments
with more informative types, i.e. a subtype @’ <: @, as it might use
information that are not available in supertypes of . On the other
hand, when the function is fully evaluated, it will return a term of
type 7, thus the caller of the function will also accept any supertype
7’ of 7 by type subsumption, hence the order of the types is kept.

This subtyping relation defined on the function caller/callee
relationship allows functions of a subtype to be safely substituted
for their supertypes.

The concept of flipping a relation from the antecedent to the con-
sequent of a rule is called contravariance (or contravariant relation).
If the order is kept, it is called covariance (or covariant relation).

The implementation is recursively defined as follows:

isSubtype (ArrowTy a b) (ArrowTy x y) =
isSubtype x a && isSubtype b y

3.5.2  Function application. To extend the function application
rule in the presence of subtypes, we need to use the subsumption
rule. It follows that if a function f takes in a value of type 7, and a
is a subtype of 7, then terms of type « can also be applied to f.

I'rf:t>p a<:t
Trfo:p

We can use this definition to directly implement our function
application typechecker:

T'rov:a

FunctionApp

typecheck env (FApp fn arg) =
case typecheck env fn of
Left err -> Left err
Right (ArrowTy t1 t2) ->
case typecheck env arg of
Left err -> Left err
Right argType ->
if isSubtype argType t1
then Right t2
else Left $ "Type of argument is not
a subtype of the parameter"
Right t -> Left $ "Expected Arrow type, got "
++ show t

3.6 Putting the Typechecker together

Now that we defined the subtyping relation on every type in our
language FunSub, we can make use of the typechecker to check the
well-typedness of expressions.

3.6.1 Basic types. Basic types are simple enough for the type-
checker to reconstruct its type, so there is no need for explicit
typing:

[Exprl: 1
[Typecheck] [OK]: Int

[Exprl: a
[Typecheck] [FAIL]: a is not defined

[Expr]l: true
[Typecheck] [OK]: Bool

3.6.2 Record types. The types of the record fields are checked
to match its explicit type:

[Exprl: { a=2,b=313}::{a: Int, b: Int }
[Typecheck] [OK]: { a: Int, b: Int }

[Exprl: { a =2, b =true } :: { a: Int, b: Int }
[Typecheck] [FAIL]: Incorrect record type

Record types can be ascribed with its supertype, but not its
subtype:

[Exprl: {a=2,b=3%}::{a: Int}
[Typecheck] [0K]: { a: Int }

[Exprl: { a=2,b=33}::{}
[Typecheck] [OKI: { 3}

[Exprl: { a=2,b=33}::{a: Int, b: Int, c: Int }
[Typecheck] [FAIL]: Incorrect record type

They can also be nested:

[Expr]l: {a={d=43}:: {d: Int3} b=3%
::{a:{d: Int}}

[Typecheck] [OK]: { a: { d: Int } }

[Exprl: {a={d=43}::{d:Int3} b=373

c:{a:{c:Int3}}
[Typecheck] [FAIL]: Incorrect record type

3.6.3 Function types. The Arrow type is ascribed between the
parameter and the function body. It is recursively checked to match
the parameter and body types:

[Expr]: (fn x :: (Int -> Int) => x)
[Typecheck] [OK]: (Int -> Int)

[Expr]: (fn x :: (Int -> Int) => y)
[Typecheck] [FAIL]: y is not defined

[Exprl: (fn x :: ({ a: Bool } -> Int) => x.a)
[Typecheck] [FAIL]: Type mismatch: expected Int, got Bool

[Exprl: (fn x :: ({ a: Int } -> Int) => x.b)
[Typecheck] [FAIL]: Unable to lookup field b in { a: Int }



Identity functions can promote the type of the argument to its
supertype, but not subtype:

[Exprl: (fn x :: ({ a: Int, b: Int } -> { a: Int }) => x)
[Typecheck] [OK]: ({ a: Int, b: Int } -> { a: Int })

[Exprl: (fn x :: ({ a: Int } -> { a: Int, b: Int }) => x)
[Typecheck] [FAIL]: Type mismatch: expected
{ a: Int, b: Int }, got { a: Int }

3.6.4 Function application. The type of the argument needs to
be a subtype of the paramter of the function, as defined in the rule
FunctionApp:

[Exprl: (fn x :: ({ a: Int } -> Int) => x.a)
{a=23%::{a:Int}
[Typecheck] [OK]: Int

[Expr]: (fn x :: ({ a: Bool } -> Bool) => x.a)
{a=273%: {a: Int }

[Typecheck] [FAIL]: Invalid argument of type { a: Int }
is not a subtype of the parameter type { a: Bool }

Revisiting the function application example in §3.2.6, we can
now verify that it type checks, as the type of the argument is a
subtype of the parameter:

[Exprl: (fn x :: ({ a: Int, b: Int } -> { a: Int }) => x)
{a=2,b=2,c=true} :: { a: Int, b: Int, c: Bool }
[Typecheck] [OK]: { a: Int }

Since functions are first-class, we can pass functions in as argu-
ments:

[Exprl: (fn x :: ((Int -> Int) -> Int) => x 2)
(fny :: (Int -> Int) =>vy)
[Typecheck] [OK]: Int

The contravariant and covariant properties of function subtyping
can also be observed in the following example of applying a function
to an identity function:

[Exprl: (fn x :: (
({ a: Int, b: Int } > { a: Int }) —>
({ a: Int, b: Int } -> { a: Int })) => x)
(fny :: ({ a: Int } -> { a: Int, b: Int })
=>{a=y.a, b=273%::{a: Int, b: Int })
[Typecheck] [O0K]: ({ a: Int, b: Int } -> { a: Int })

With this application, the left hand side of the type of the argu-
ment, { a: Int },is demoted to a subtype, { a: Int, b: Int }
via the contravariant property. On the other hand, the return value
of the argument is promoted from { a: Int, b: Int }toa
supertype { a: Int } via the covariant property.

4 RELATED WORK

Since Cardelli’s introduction of subtyping [5], there has been decades
of research poured into the study of subtyping systems. In this sec-
tion, we will explore some of these related work from a bird’s eye
view.

The common theme of these research involves inserting subtyp-
ing into classical type systems, and dealing with the complications
that arises from it.

4.1 Classification of subtyping systems

There are two major classifications of subtyping systems: structural
and nominal.

4.1.1  Structural. The idea of structural subtyping was first de-
scribed by Cardelli in “Structural Subtyping and the Notion of Power
Type” [6]. He describes the idea that subtype relations can be ap-
plied to all type constructions, not unlike what we implemented in
the earlier section for record and function types, by deriving the
relation and type rules solely from the structure of the types.

Cardelli showed that for every type, four rules can be derived:

o Type formation for defining well-typedness of a type in an
environment

o Type introduction for annotating a term with its the type

e Type elimination for manipulating a term to some other
type (e.g. record projection)

o Type subtyping for defining subtype relations over a type

The defining advantage of this system is the lack of the need for
theorem proving, since types match purely based on syntactical
structures. Types can also be compared regardless on when and
how they are constructed, since such information is independent
from the relation definitions.

A downside of a system that aims to provide all types with
structural subtype relations is that its typechecking algorithm on
recursive structures was shown to be undecidable [6] as the tradeoff
for more typing expressiveness.

Structural type system are popular in functional programming
languages derived from lambda calculus, due to the paradigm’s
structural language features, e.g. Haskell & ML.

4.1.2  Nominal. Unlike structural systems where names are mere
aliases to types, nominal systems delegates the declaration of sub-
type relations to the programmer, such as the case of class hierar-
chies using inheritance (e.g. class A extends B..) in Feather-
weight Java, [19] and Java by extension. This brings the advantage
that the declaration of one type being a subtype of another is suffi-
cient for the program to decide, at both compile and run time, which
type names are related to each other in a global record without
having to delve into the structure of the type.

Pierce describes a major advantage of nominal systems to be
[26] the ease of defining recursive types: since types are defined
nominally, recursive types can easily handle occurrences of its own
type name within its structure. There is almost no requirements
on when a type is defined; a recursive type name reference is no
different from a reference to another type name.

However, Pierce also explains that this inherently creates a de-
pendency to some global state whenever information about some
type relation is needed, unlike structural types where types are



closed and carry enough information for the type system to deter-
mine relations in an isolated manner [26].

There are clear upsides and downsides to either subtyping sys-
tem, hence there have been efforts by Malayeri and Aldrich to create
a type system using concepts from both camps, resulting a core
hybrid subtyping calculus [21].

4.2 Recursive subtypes

Introducing subtyping to recursive data structures raises a couple of
complications as detailed by Amadio and Cardelli [4]: the approach
on how to define a subtype relation between two recursive types,
as well as determining whether a recursive term has a type.

To define a subtype relation on the structure of recursive types,
the paper describes an algorithm that represents the types in com-
parison using cyclic linked structures (or graphs) in memory, and a
trail of visited node pairs between the two structures. Wherever a
recursive call is encountered during a traversal, an edge is created
back to the root address of the structure, and the algorithm has
the choice on whether to unfold into a larger linked structure or
perform a structural case comparison with the current nodes using
information from the trail, hence ensuring termination.

The paper also showed that there exists a unique coercion map-
ping between any two (recursive) types in the subtype relation, and
described an algorithm that can infer a least type for terms using
such coercions.

4.3 System F with subtyping

Building on Girard-Reynold’s work on the second-order lambda
calculus System F, Cardelli et al. extended it with the notion of sub-
typing, resulting in a new type system called System F<: described
in 1991 [9], and then with an implementation in 1993 [7].

In order to represent subtypes in parametric polymorphic type
systems with type schemes, the universal quantifiers for type schemes
need to be augmented with bounded type quantifiers in the form
of a subtype relation, i.e. a type scheme YX.B with a bounded type
quantifier results in VX<: A.B for some types X, A, B [8].

4.4 Type inference

Type inference algorithms have been a staple in typed languages as
it relieves the programmer from verbose typing notations. However,
popular algorithms such as Algorithm ‘W [15] cannot be used
alongside subtyping with the absence of the property that every
term is uniquely typed. A compatible algorithm introduced by
Cardelli [5] uses the join and meet concepts from order theory for
an algorithm to derive the unique principal types of each term.

Furthermore, parametric polymorphic type systems built around
the Hindley-Milner type inference algorithm [15, 18, 23] have de-
cidable type inference via the unification algorithm. However, by
introducing subtyping, the typing constraint is changed from one
that is based on equality (r1 = 72) to one that is based on a partial
order on types (71 <: 72). This renders the unification algorithm
useless and makes such a type inference algorithm undecidable in
systems with subtyping.

There has been attempts at bringing decidable type inferencing
into parametric polymorphic type systems with subtyping. Dolan’s
recent work on designing such an algorithm uses influences from

data flow analysis on a core calculus of ML with subtyping, MLsub,
and has gained notable traction [17]. He made further progress
in his Ph.D. thesis, Algebraic Subtyping, where he described a
framework for type inference on ML-style type systems using an
algebraic approach called the theory of biunification [16].

4.5 Subtyping effect systems

Effect systems are extensions of type systems by statically cap-
turing side effects resulting from function applications, such as
input/output and randomness, via control flow analysis [27]. Using
the subsumption concept, Tang et al. [28] implemented a subeffect
system, a type system with subtyping and a partially-ordered inclu-
sion relation over side effects, along with a sound and complete type
reconstruction algorithm to remove the need for explicit typing.

4.6 Type system for Scala

Scala has a rich and complex type system that attempts to unify the
mature object-oriented paradigm of Java with functional program-
ming concepts. Odersky, Scala’s creator, made significant efforts in
developing Scala’s type system by bringing in aspects of modern
type system research, such as subtypes, compound types, nested
classes and refined types [25].

Cremet et al. created a minimal core calculus for typechecking
some parts of the Scala language in Featherweight Scala, which
includes decidable typechecking for subtypes [14].

However, Scala’s type inference algorithm is not complete (it
has a limited form of local type inference) as explicit type annota-
tions are still needed in places where the inference algorithm has
insufficient information to derive a principal type [2].

4.7 Type system for Erlang

One of the other ways that subtyping found its way into industry
practice was via Erlang. Erlang was originally designed to be a
functional and untyped language for fault-tolerant and distributed
systems applications. Marlow and Wadler [22] made efforts to im-
plement a type system with inference for the language, where they
found that a subtyping type system based around the one developed
by Aiken and Wimmers [3] was the best fit for the language. The
alternatives included the Hindley-Milner type system, where types
are constrained by equality instead of an ordered relation, as well
as row variables with soft typing systems.

Erlang organizes its types into a complete lattice, with the any ()
(T) type and none () (L) types forming the upper and lower bounds
of the type hierarchy, and type unions are typed as the greatest
lower bound of its types [1].

4.8 Prototypal subtyping

Implementing static and strong type systems for complex dynamic
languages is under heavy research. There has been recent develop-
ment on static type inference on dynamic prototypal languages like
JavaScript by Chandra et al. [11], where subtyping relationships are
based on a classification of prototypal property on types. For proto-
typal types, the subtype relation is simply the original prototype
inheritance where child types contains all attributes defined in the
parent’s prototype, whereas non-prototypal types uses structural
subtyping.



5 FUTURE WORK

Subtyping is a mature field of research, but with the discovery and
invention of new type systems, it remains as a consistently inter-
esting additional feature, bringing difficult problems by removing
the guarantee of uniquely typed terms through type subsumption.

Our implementation of the typechecker is functional but prim-
itive, and its syntax is verbose with the explicit typing littered
throughout expressions. We aim to implement implicit typing by
using a type reconstruction algorithm described in Cardelli’s paper
[5] and further elaborated with the idea of type inferencing using
minimal types from Mitchell’s work [24].

6 SUMMARY

In this report, we explained the practical motivations for adding
subtyping into classical type systems. The flexibility gained in imple-
menting subtyping have led to interesting methods of structuring
and organizing information in a programming language.

We also listed the formal rules for subtyping on basic, record, and
function types. Using these rules, we implemented a typechecker
on a toy functional language with subtyping, FunSub, using Haskell,
and demonstrated its functionality with concrete examples.

Lastly, we gave an overview of related research that conceptu-
alised from the inclusion of subtyping into classical type systems
and programming languages.
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